منابع مشابه
On the Weinstein Conjecture in Higher Dimensions
The first break-through on this conjecture was obtained by C. Viterbo, [19], showing that compact energy surfaces in R2n of contact-type have periodic orbits. Extending Gromov’s theory of pseudoholomorphic curves, [3], to symplectized contact manifolds, H. Hofer, [4], related the Weinstein conjecture to the existence of certain pseudoholomorphic curves. He showed that in dimension three the Wei...
متن کاملapplication of brand personality scale in automobile industry: the study of samand’s brand personality dimensions
این تحقیق شخصیت برند سمند را در ایران با استفاده از مدل پنج بعدی آکر (1997) بعنوان یک چهارچوب بطور توصیفی سنجیده است. بنابر این چهارچوب که دراصل در 42 جزء (42 ویزگی شخصیتی) ودر پنج بعد شخصیتی طراحی شده بود ودر کشورها وصنایع مختلف آزموده شده بود, پرسنامه به زبان فارسی ترجمه شده و با استفاده از روشهای ترجمه معکوس و مصاحبه عمیق با 12 متخصص ایرانی به 38 جزء کاهش یافت. و نظرسنجی ای در پنج نمایندگی ا...
15 صفحه اولThe Alexander-orbach Conjecture Holds in High Dimensions
We examine the incipient infinite cluster (IIC) of critical percolation in regimes where mean-field behavior have been established, namely when the dimension d is large enough or when d > 6 and the lattice is sufficiently spread out. We find that random walk on the IIC exhibits anomalous diffusion with the spectral dimension ds = 4 3 , that is, pt(x, x) = t . This establishes a conjecture of Al...
متن کاملWeak Gravity Conjecture with Large Extra Dimensions
In the presence of large extra dimensions, the fundamental Planck scale can be much lower than the apparent four-dimensional Planck scale. In this setup, the weak gravity conjecture implies a much more stringent constraint on the UV cutoff for the U(1) gauge theory in four dimensions. This new energy scale may be relevant to LHC. Extra dimensions are naturally required in some fundamental theor...
متن کاملOn the Volume Conjecture for Small Angles
Given a knot in 3-space, one can associate a sequence of Laurrent polynomials, whose nth term is the nth colored Jones polynomial. The Generalized Volume Conjecture states that the value of the n-th colored Jones polynomial at exp(2πiα/n) is a sequence of complex numbers that grows exponentially, for a fixed real angle α. Moreover the exponential growth rate of this sequence is proportional to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inventiones mathematicae
سال: 2019
ISSN: 0020-9910,1432-1297
DOI: 10.1007/s00222-019-00935-9